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ABSTRACT 

Pull-In parameters are important properties of 
electrostatic actuators.  Efficient and accurate 
analysis tool that can capture these parameters for 
different design geometries, are therefore essential.  
Current simulation tools approach the Pull-In state 
by iteratively adjusting the voltage applied across 
the actuator electrodes.  The convergence rate of this 
scheme gradually deteriorates as the Pull-In state is 
approached.  Moreover, the convergence is 
inconsistent and requires many mesh and accuracy 
refinements to assure reliable predictions.  As a 
result, the design procedure of electrostatically 
actuated MEMS devices can be time-consuming.  In 
this paper a novel Displacement Iteration Pull-In 
Extraction (DIPIE) scheme is presented.  The DIPIE
scheme is shown to converge consistently and far 
more rapidly than the voltage iterations (VI) scheme 
(>100 times faster!).  A relaxation based DIPIE
scheme that requires separate mechanical and 
electrostatic field solvers is suggested.  Therefore, it 
can be easily implemented into existing MOEMS 
CAD packages.  Moreover, using the DIPIE scheme, 
the Pull-In parameters extraction can be performed 
in a fully automated mode, and no user input for 
search bounds is required. 

INTRODUCTION

Electrostatic actuation is widely used in MEMS 
devices to deform elastic elements [1-15]. The 
electromechanical response of these actuators may 
exhibit an inherent instability, known as the pull-in
phenomenon [1-10].  By applying a voltage 
difference across the electrodes of the actuator, an 
electrostatic force is generated that tends to reduce 
the gap between the electrodes.  For a sufficiently 
low voltage, the electrostatic force is balanced by an 
elastic restoring force.  In this stable state the gap 
between the electrodes is inversely proportional to 
the applied voltage.  Above a certain voltage, the 
electrostatic force is larger than the restoring elastic 
force for any deformation.  As a result, the actuator 
is unstable and the gap between the two electrodes 
rapidly vanishes.  The voltage and deformation at 
the onset of instability are termed pull-in voltage and 

pull-in deformation, or in short the pull-in 
parameters of the actuator. 
Several approaches for extracting the pull-in 
parameters have been reported in literature [1-10] 
and have been implemented in commercially 
available MEMS CAD tools [14-15].  Approximate 
analytical models have been suggested for 
electrostatic actuators [1-5].  These models yield fast 
results but are limited to actuators with very few 
degrees of freedom.  To accurately calculate the 
pull-in parameters of general deformable elements 
with infinite degrees of freedom, such as beam and 
plate actuators, a more general approach has been 
suggested [4-10,14,15].  In this approach, the 
electromechanical response of the actuator is 
numerically simulated by fixing the applied voltage.  
The pull-in parameters are calculated by iteratively 
approaching the pull-in voltage with decreasing 
voltage increments [4-10,14,15], and henceforth this 
approach is referred to as the voltage-iteration (VI)
scheme.  This algorithm was implemented in a 
finite-difference scheme [4,5] and in coupled finite-
elements (FEM) and boundary-elements (BEM) 
scheme [6-10,14,15]. 
In this paper, a novel algorithm for extracting the 
pull-in parameters of general electrostatic actuators 
is suggested.  The algorithm is based on iterating the 
displacement of a pre-chosen degree-of-freedom of 
the actuator, rather than the applied voltage.  In 
essence, the new Displacement Iteration Pull-In 
Extraction (DIPIE) algorithm replaces the original 
problem that has stable and unstable equilibrium 
states, with a series of equivalent problems for 
which the equilibrium solution is always stable.
The different approaches of the VI algorithm and the 
new DIPIE algorithm are discussed.  
Implementation of the new algorithm within a finite-
difference code for a clamped-clamped beam 
actuator is described and compared with the 
performances of the VI algorithm. The comparison 
shows that the DIPIE scheme converges much faster 
than the VI scheme (>100 time faster) and it is far 
more consistent and well behaved. 

DIPIE VS. VI SCHEMES 

A typical static equilibrium curve of an electrostatic 
actuator is schematically described in Fig. 1.  The 
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convex function describes the applied voltage as 
function of a representative parameter of the actuator 
deformation.  Such a parameter may be the 
displacement of the center of a clamped-clamped 
beam.  For deformations smaller than the pull-in 
deformation, the static equilibrium state is stable 
(solid line).   In contrast, for deformations larger 
than the pull-in deformation the static equilibrium 
state is unstable (dashed line). 
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Figure 1 – Equilibrium states of the electrostatic actuator.     

Two aspects of the physical response of electrostatic 
actuators are apparent in this figure: I. The voltage is 
a unique function of the deformation whereas 
deformation is not a unique function of voltage; II. 
The maximal deformation can be trivially estimated 
as it is bounded by the gap between the electrodes.  
In contrast, the maximal voltage cannot be a priory 
estimated. 

THE VI ALGORITHM 

In the VI algorithm, the pull-in voltage is iteratively 
approached.  At each iteration, the static equilibrium 
deformation is calculated for the applied voltage.  
This calculation can be carried out by a relaxation 
method [6,7,9], Newton-Raphson method, or a host 
of other numerical schemes [6,9].   If the 
deformation calculation converges, it is concluded 
that the applied voltage is bellow the pull-in value.  
On the other hand, if the calculated deformation fails 
to converge it is concluded that the applied voltage 
is higher than the pull-in value.  Several methods 
have been employed to establish whether the 
deformation calculation converges [4-6,9,10].  The 
interval between these two limits is continuously 
decreased until the voltage interval is smaller than a 
predetermined accuracy.  The iterations are 
represented by the set of horizontal lines in Fig. 1.  It 
can easily be seen that not all the horizontal lines 
cross the equilibrium curve, and therefore not all 
lines are associated with equilibrium states. 
The main advantage of the VI algorithm is its 
simplicity and ease of integration into commercial 

CAD tools.  For any applied voltage, the electro-
elastic problem is solved by iteratively solving 
uncoupled electrostatic and elastic problems.  It is 
therefore easy to implement this algorithm by 
sequentially employing existing numerical codes for 
each of these problems [6,10,14,15]. 
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Figure 2 – The clamped-clamped beam configuration. 

THE DIPIE ALGORITHM 

The DIPIE algorithm is based on an inverse 
approach in which all calculations converge.  At 
each iteration, the displacement of a pre-chosen 
degree-of-freedom (DOF) of the actuator is 
postulated.  A set of reduced (voltage-free) electro-
elastic coupled equations is then solved to yield the 
deformation of the actuator while nullifying the 
reaction force applied to the pre-chosen DOF.  Next, 
the applied voltage that is required to induce the 
given deformation is calculated.  A simple local-
maximum search is then employed to iteratively 
approach the pull-in state where the voltage is 
maximal.  The iterations are represented by the set of 
vertical lines in Fig. 1.  Each of these vertical lines 
crosses the equilibrium curve and is therefore 
associated with an equilibrium state of the actuator. 
Like the VI algorithm, the DIPIE algorithm can be 
easily integrated into commercial CAD tools, using 
separate electrostatic and mechanical field solvers 
with a relaxation based algorithm. 

THE CLAMPED-CLAMPED BEAM 

To demonstrate the capabilities of the new scheme, 
the typical problem of the clamped-clamped beam is 
chosen [4-6].  The geometry of the problem is 
shown in Fig. 2.  The bottom electrode is assumed at 
a portion of the upper beam.  The equilibrium 
equations of the elastic beam are 
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Moreover, the effective elastic modulus, E*, is equal 
to the Young modulus E if the beam thickness is of 
the order of the beam width, and is equal to the plate 
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modulus E/(1-ν2) if the beam width is much larger 
than its thickness [5].  Also, I is the second moment 
of the beam cross-section, ε0 is the permitivity of 
free-space, d the initial gap between the electrodes, 
W the width of the beam, L the length of the beam 
and {x, y} are the Cartesian coordinates. 
The Eqs. are iteratively solved using finite-
differences in the VI scheme [4,5] and the DIPIE
scheme.  In each of the Pull-In search points in the 
DIPIE scheme the elastic deflection is iteratively 
solved using a relaxation method.  In the VI scheme 
the elastic deflection is solved using the standard 
relaxation [4-7]. 

Figure 3 – Comparison between the convergence of the 
deformation in the VI and DIPIE algorithms. 

The convergence of the elastic deflection in both 
schemes is described in Fig. 3.  A voltage point was 
chosen for running the VI relaxation scheme.  The 
norm of the relative error of the deflection is 
calculated at each of the iterations and is shown in 
the figure.  The resulting displacement at the center 
of the beam is used for running the DIPIE relaxation 
scheme.  The norm of the relative error of the 
deflection is presented in logarithmic scale against 
the number of iterations.  It is seen that the 
convergence of the DIPIE scheme is much faster 
than the convergence of the VI scheme.  Moreover, 
the convergence rate in the DIPIE scheme is 
constant, whereas the convergence rate in the VI
scheme varies and declines with each iteration. 
The convergence rates and the total number of 
iterations required to converge for both schemes at 
different deflections of the beam center point are 
described in Fig. 4.  The relative error, eu, described 
in Fig. 3 is approximated by log(eu)=a-ib, where a
is a constant, b is the convergence rate and i is the 
iteration number.  This approximation is motivated 
by the linear convergences (semi logarithmic scale 
in Fig. 3) of the DIPIE scheme.  Also, the 
convergence of the VI scheme tends to linearity after 
many iterations.  It can clearly be seen that the 
convergence of the VI scheme rapidly deteriorates as 
the Pull-In point is approached, and that at the Pull-
In point the convergence vanishes.  In contrast, the 

convergence rate of the DIPIE scheme is high and 
remains high even beyond the Pull-In point. 
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Figure 4 – DIPIE against VI schemes convergence rate 
and number of iterations required to converge to 
equilibrium states. 

In order to examine the consistency of both schemes, 
a specific problem is solved using increasingly 
refined meshes for several convergence accuracies.  
To assure the convergence of the inner equilibrium 
loop, its accuracy (defined on the norm of the 
deflection errors) is set to two orders of magnitude 
higher than the required accuracy of the outer Pull-In 
search loop.  Fig. 5 presents the Pull-In parameters 
calculated by both schemes against the inverse of the 
number of nodes.  For any given accuracy, the 
DIPIE scheme shows a similar consistent 
convergence as the mesh is refined, making it easy 
to predict a value at the limit of continuum.  This 
predicted limit converges with increasing accuracy.  
In contrast, the VI scheme shows an inconsistent 
behavior, which is less pronounced for the Pull-In 
voltage at high accuracies.  It is therefore concluded 
that it is impractical to extract a reliable estimation 
of the pull-in deflection.  The voltage near the pull-
in state is insensitive to the deflection errors and 
therefore for a sufficiently high accuracy, the VI
scheme yields reasonable estimations for the pull-in 
voltage. 
Fig. 6 illustrates the difference in numerical effort 
required by each scheme to converge to the Pull-In 
state within a given accuracy.  The numerical effort 
is measured by the CPU runtime required to 
approach the Pull-In state.  The great advantage of 
the DIPIE scheme, in terms of runtime (20-120 
faster), is trivially seen in this figure.  In practice, 
due to the consistency of the DIPIE scheme, a lower 
accuracy and a coarser mesh are sufficient to extract 
a reliable estimation of the Pull-In parameters.  On 
the other hand, in the VI scheme a higher accuracy 
and a finer mesh are required to reach a reliable 
estimation.  Therefore, the advantage of the DIPIE
scheme is even higher than appears from Fig. 6 
(>100 times faster). 
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Figure 5 – Convergence with mesh and accuracy refinement for the DIPIE scheme (a) and (c), and VI scheme, (b) and (d). 
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Figure 6 – DIPIE against VI schemes run-time vs. 
accuracy. 

SUMMARY 

The qualities of the DIPIE scheme result from the 
fact that the original inherently unstable physical 
problem of the voltage controlled electrostatic 
actuator is replaced by an equivalent problem that is 
inherently stable. 
To conclude, the main advantages of the DIPIE
scheme over the VI scheme are: 

1. Runtime – over a 100 times faster. 
2. Accuracy – consistent convergence in both 

accuracy and mesh refinements whereas the VI
scheme is inconsistent and the pull-in 
deformation is impractical to extract. 

3. Fully automated – the displacement is naturally 
bounded by the geometry of the actuator 
whereas the voltage upper bound is unknown 
and requires a user input. 

Furthermore, the DIPIE scheme can be easily 
implemented in existing MEMS CAD tools using 
separate electrostatic and mechanical fields solvers. 
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